MASS SPECTROMETRY OF THE POSITIONALLY ISOMERIC, MONO-BENZYL ETHERS OF METHYL GLYCOPYRANOSIDES

VINCENT MIHÁLOV, VLADIMÍR KOVÁČIK, RUDOLF TOMAN, AND IGOR TVAROŠKA Institute of Chemistry, Slovak Academy of Sciences, 842 38 Bratislava (Czechoslovakia) (Received June 7th, 1982; accepted for publication in revised form, September 21st, 1982)

ABSTRACT

The electron-impact, mass-spectrometric behavior of all theoretically possible, positionally isomeric monobenzyl ethers of methyl pento-, hexo-, and 6-deoxy-hexo-pyranosides is described, on the basis of 70- and 12-eV mass spectra, O-deuterium-labeling experiments, elemental composition, and metastable-transition measurements. The semiempirical MNDO quantum-chemical method was used for calculation of both the geometrical parameters (bond lengths, bond angles, and dihedral angles) and the distribution of net charges in the cyclic and acyclic forms of the abundant $[C_4H_7O_3]^+$ and $[C_5H_9O_4]^+$ ions. The results obtained show that the cyclic structures of both ions are the more stable. Differences in the fragmentation of the compounds studied have been applied for establishing criteria that permit simple and unambiguous localization of the benzyl group in monobenzyl ethers of methyl glycopyranosides.

INTRODUCTION

Benzyl groups are very often used for protection of hydroxyl groups in carbohydrate chemistry. Facile routes for the preparation of partially benzylated derivatives of saccharides include partial benzylation¹ of compounds having several OH groups, and nucleophilic opening of the anhydro ring of sugar epoxides by the benzylalkoxide anion². Following these procedures, it is necessary to determine the positions of benzyl groups in the isolated, partially benzylated saccharides. In connection with preparation of new benzylated derivatives of saccharides, we first applied methods, similar to methylation analysis, for determination of the position of benzyl groups. A sample was methylated, debenzylated, and the position of the benzyl group in the parent saccharide determined from the mass spectrum of the partially methylated derivative³⁻⁵. However, this approach is time consuming and therefore, in our studies of the mass-spectrometric fragmentation of partially benzylated methyl glycosides of various saccharides (Table I), we set out to develop a method that would enable routine, direct estimation of this group in the sugar derivatives.

TABLE I
COMPOUNDS INVESTIGATED

OR OR	√ OMe	P T TO DM	e		
1 - 8		9 - 11			
Compound	Anomeric configuration	R-	R ³	R^{4}	R^*
1	β -D	Bzl	Н	Н	H
2	β-D	11	Bzl	H	H
3	a-D	H	Bzl	H	11
4	β-1)	Н	H	Bzl	П
5	(t-1)	Bzł	H	H	СН⁵ОН
6	(r-1)	H	Bzl	H	$CH^{2}OH$
7	α-1)	H	Н	Bzl	CH_2OH
8	$\alpha.eta\cdot$ D	11	H	Н	←H ₂ OBzl
9	ιx-t	Bzl	H	H	CH,
0	ar-l	11	Bzl	H	CH
1	cr-I	Н	H	Bzl	(H

RESULTS AND DISCUSSION

Methyl O-benzyl pentopyranosides (1-4). — Mass spectra (12 eV) of the title compounds are given in Table II. All of them afforded a molecular-ion peak at m/z 254. The position of the benzyl group at O-2 of compound 1 is characterized by very intense ions at m/z 163 of the fragmentation series F (ref. 6), and by ions at m/z 103 (105) that are presumably formed in the manner shown in Scheme 1. The MNDO quantum-chemical calculations⁷ demonstrated that, of the two possible structures for the ions (Scheme 1), the cyclic one is the more stable.

The theoretical structures of both isomers of $[C_4H_7O_3]^+$ (m/z 103) are schematically depicted, together with the atom numbering and heats of formation

m/z	$\%\Sigma_{45}$	× 100			m/z	$\%\Sigma_{45}$	$\%\Sigma_{45} \times 100$			
	1	2	3	4		1	2	3	4	
254	15	99	149	333	122	105	104	78		
253	9				121	184	135	90	102	
236	25			5	120				61	
223	41	113		44	117	168			197	
222		167	761	130	116	197	497	2594	91	
205	35			27	115		206	166	47	
204		24	53		114	302	2061	1156	133	
193	47		42	122	106		120	62	80	
186		35	19		105		49	19	141	
179				50	104		67	50	25	
176	175	241	101	264	103	1147	135	90	189	
175			45		100		135	93		
163	3538	1030	479	3560	99	149	49	42	38	
162			73		98	213	42	180	83	
158	92	85	45	22	87	286	263	200	778	
151		675	366	30	86		497	648		
150	204	138	81	108	85	210	177	121	185	
149				63	84	235				
148			62	30	82		67	36	194	
147			36	33	75	66			55	
146	79	284	124	69	74	102	426	282	122	
145	153	71	50	108	73	669	497	338	667	
144			64		70	89	266	197	222	
136			14		69	172	462	366	86	
135		21	22	58	68		117	78		
134		31	19	111	61	92	63	42	94	
133	350	88	70	333	60	95			333	
132	60	39	39	30	58		78	50		
131	137	103	146	50	57	105	49	62	108	
130	70	56	42	194	54				72	
129	111	42	22	27	45	255	53	25	72	

 (ΔH_f) , in Scheme 2. The geometrical parameters are listed in Table III. A large energy-difference (45.3 kcal.mol⁻¹) between the acyclic and cyclic structures is calculated. Table IV gives the net charges of individual atoms in both structures. A higher possibility for positive-charge delocalization is evident, from the large difference in charges, at C-2, C-5 and O-1 (Table IV).

Ions having m/z 114 (114) formed by elimination of MeOH and PhCH₂OH from the molecular ions give the most intense peak in the mass spectrum of compound 2 (Scheme 3). In compound 2, presence of the benzyl group at O-3 is also evident from an intense peak at m/z 151 (151) for ions of the fragmentation series J. Ions of the fragmentation series B are also intense. Measurements of metastable-ion transitions and O-deuteration experiments have revealed that the ions

TABLE III

BOND I FNGTHS (pm), BOND ANGLES AND DIELDRAL ANGLES (deg) OF THE NOMERS $[C_4H_*O_4]^+$ AND $[C_4H_*O_4]^+$ IN THEORETICAL STRUCTURES CALCULATED BY THE MYDO METHOD

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MADO METHOD	!				ALLEMANT TO THE CONTRACT OF TH				10000
Cyclic Ayylac Cyclic Cyclic Cyclic Ayylac Cyclic Cyclic<	Par ameter	0-H-0	+/12		, [*	Parameter	0-H')	, l'+	O_cH_s	, [r
1283 1213 127.8 1215 144-C2-O-1 119 8 123 4 120 1 1553 1566 1550 1562 147-C3-C2 108 0 106 1 108 3 1605 1596 1550 1562 147-C3-C2 108 0 114 3 117 1 152 1494 127	an arramanna da	Cvelu	Acyclic	_	.4cyclu	2 2 2	Cyclic	Acreh	Cyche	Acvelu.
155 3 156	O-1-C-2	128 3	121 3		121.5	H-6-C-2-O-1	8 611	123 4	120.1	123 9
1605 1598 160 158 6 O-8-C-3 108 6 1143 1075 152 154 1475 144-C-3 1134 1145 1131 151 1104 1102 1105 1105 1112 1154 1154 1154 152 152 152 172 144 1154 1154 1154 153 154 154 115 1154 1154 1154 154 155 155 155 144 1154 1154 1154 155 156 157 158 144 144 144 154 144 155 156 157 158 144 144 144 144 144 144 156 157 158 157 158 154 144 144 144 157 158 157 158 157 158 154 154 158 159 150 150 150 150 150 150 158 150 150 150 150 150 150 158 150 150 150 150 150 158 159 150 150 150 150 159 150 150 150 150 150 1	C-2-C-3	155 3	1566	155 0	156.2	11-7-C-3-C-2	108 0	105	108 3	105 8
145.2 149.4 H-94-8-C-3 H3.4 H34-0-8-C-3 H9.5 H3.4 H34-0-8-C-3 H9.5	C-3-C+	160.5	1598	0 091	158.6	O-8-C-3-C-2	108 6	1143	107.5	113.9
1364 127 5 H-10-C-4-C-3 119 5 116.8 1199 6 1101 11104 1102 1105 H-10-C-4-C-3 114 5 117 2 115 1 1102 112 8 112 2 112 9 H-14-C-5-C-4 112.8 112 5 115 1 1102 112 8 112 2 112 9 H-14-C-5-C-4 115.1 120 8 115.4 1102 113 9 112 7 113 0 H-14-C-5-C-4 115.1 120 8 111.2 1113 1114 1115 1109 6 H-14-C-5-C-4 H-14-C-5-C-4-C-3 H-14-C-5-C-4-C-3	0-1-0-5	145.2		1464		H-4-()-8-C-3	1134	5 +1	113.1	1140
142	C-5-0-14			1364	127.5	H-10-C-4-C-3	109 5	105.8	109 6	107.4
1101 1104 1102 1105 H-12-O-11-C-4 1148 1158 1154 1152 1128 1154 1152 1129 H-13-C-5-C-4 1151 1208 1125 1139 1127 1139 1127 1139 1127 1139 1127 1139 1127 1139 1127 1139 1127 1139 H-14-C-7-O-6 1151 1208 1115 1115 1116 1116 1116 1117 1118 1118 1118 1119 H-4-C-7-C-6-1 8.4 1784 8.8 1118 1119 H-4-C-7-C-6-1 8.4 1784 8.8 1118 1119 H-4-C-7-C-6-3 1141 1113 1208 H-14-C-7-C-6-3 1131 1208 H-14-C-7-C-1-O-5 1131 1208 H-14-C-3-C-1-O-5 1397 819 1208 H-14-C-3-C-1-O-5 1397 819 1208 H-14-C-3-C-1-O-5 1397 819 1208 H-14-C-3-C-2-O-1 1273 1296 1288 H-14-C-3-C-2-O-1 1297 819 1297	O-6-C-14			145.0	144.5	0-11-0-4-0-3	1145	117.2	1151	117.0
112 112 112 112 112 112 113	02-H-6	110.1	110 4	110.2	110.5	H-12-0-11-C-4	8 + = =	115.8	115.4	115.6
137 9 139 1 138 2 139 4 H-14-C-5-C-4 115.1 120 8 111.2 137 1 139 1 13.2 13.9 H-16-C-7-O-6 137 1 138 6 13.7 13.1 H-16-C-7-O-6 137 1 138 6 13.7 13.1 H-16-C-7-O-6 138 1 139 1 12.5 13.9 H-16-C-2-C-1 138 1 130 1 12.5 13.9 H-16-C-2-C-1 138 1 130 1 13.1 13.1 13.1 138 1 130 2 13.1 13.1 13.1 14 1 13.2 13.1 13.1 13.1 14 1 13.2 13.1 13.1 13.1 15 1 13.1 13.2 13.1 15 1 13.1 13.2 13.1 15 1 13.1 13.1 15 1 13.2 13.1 15 1 13.1 13.2 14 1 13.1 13.1 15 1 13.2 13.1 15 1 13.1 13.1 15 1 13.1 13.1 15 1 13.1 15	(-3-H-3	112.2	112.8	112.2	112.9	H-13-C-5-C4	112.8	122 6	112.5	117.2
950 950 950 949 H-16-C-7-O-6 1127 1139 1127 1130 H-17-C-7-O-6 1137 1386 1373 1379 H-18-C-7-O-6 1137 1386 1373 1379 H-18-C-7-O-6 1115 1096 C-4-C-2-C-1 1116 1094 1125 1107 C-5-O-1-C-2-C-3 1118 1119 1113 O-14-C-5-C-4-C-3 1183 1504 100.5 1134 C-15-O-14-C-5-C-4 1194 113 120 5 1134 1210 O-8-C-2-O-1 1195 1148 1129 1201 O-8-C-2-C-1 1197 120 1201 O-11-C-4-C-3 1198 1198 1199 1201 O-11-C-4-C-3 1199 1291 1282 H-18-C-3-C-2 120 2 296 0 98 5 1114 1114 1282 H-18-C-3-C-2 120 3 62 1 200 7 120 1134 1283 112 6 120 1 134 128 120 0-11-C-4-C-3 120 2 296 0 08 5 14 14.8 128 1 128 2 15 114 1 128 2 16 12 0-11-C-4-C-3-C-2 17 18 18 18 18 18 18 18 18 18 18 18 18 18	8-O-9-)	137.9	139.1	138 2	139.4	H-14-C-5-C-4	115.1	8 051		
1127 1139 1127 113 0	6-H-8-()	95.0	95.0	95.0	6 †6	H-16-C-7-O-6			111 2	8 601
1377 138 6 137 3 137 9 H-18-C;7-O-6	C-+-H-10	112.7	113.9	127	1130	H-17-C-7-0-6			<u>~</u>	109 9
111	C-4-O-11	137.7	138 6	137 3	137 9	H-18-C-7-O-6			6 501	105 6
1115 109 6	O-11-H-12	6 th	95.0	05.0	0.50	C-4-(C-3-C-2-()-1	or X	178 4	×	183 7
1116 109 4 112 5 110 7 C-5-O-1-C-2-C-3 O 7 19 1114 111.3 O -14-C-5-C-4-C-3 263 8 1115 1114 1113 C-15-O-14-C-5-C-4 180 21 24 180 9 1118 1119 11113 H-6-C-2-C-1-O-5 180 21 24 180 9 1119 11114 11113 H-6-C-2-C-1-O-5 127 3 229 6 128 5 1119 1119 1110 O -8-C-3-C-2 127 3 229 6 128 5 1114 1113 1120 O -113 3 H-9-C-3-C-2 102 2 296 0 28 5 1114 1114 1113 H-9-C-3-C-2 220 3 56 0 217,2 1114 1114 1115 H-19-C-3-C-4-C-3 131 1 58 3 112 5 1114 1114 1115 H-19-C-1-6-C-4-C-3 131 1 58 3 112 5 1114 H-19-C-1-5-C-4-C-3 131 1 58 3 112 5 1115 H-19-C-1-5-C-4-C-3 131 1 131	C-5-H-13	1115	9 601			C.5-('-+('-3-('-2		7 72		18t v
111.4 111.3 O.14-C-5-C-4-C-3 263 8 111.4 111.3 O.14-C-5-C-4-C-4 209 8 111.4 111.3 C.15-O.14-C-5-C-4 180 21 2.4 180 9 183 3 180 4 160.5 185.9 H-7-C-3-C-2-O-1 127 3 229 6 128 5 113 4 121 0 O.8-C-3-C-2-O-1 127 3 229 6 128 5 114 8 114.8 114.8 114.8 114.9 H-10-C-4-C-3-C-2 102 2 296 0 28 5 112.9 112.9 120 1 O.11-C-4-C-3-C-2 220 3 56 0 217.2 60 6 113 4 128 2 H-14-C-5-C-4-C-3 131 1 58 3 112.5 H-14-C-5-C-4-C-3 256 6 236 0 239 7 H-16-C-15-O-14-C-5 250 7 180.9 14.8 C-15-O-14-C-5 250 7 209 7 14.8 C-15-O-14-C-5 250 7 209 7	C-5-H-12	1116	1(10 4	112.5	110.7	C-5-0-1-C-2-C-3	0.7		10	
111 5	C-7-H-16			111.4	111.3	0-1+C-5-C-+C-3			263.8	243.8
1114 1113 H-6-C-2-C-1-O-5 180 21 24 180 9 158 3 150 4 160.5 155.9 H-7-C(3-C-2-O-1 250.3 62.2 250 7 113 1 120 5 113 4 121 0 O-8-C(-3-C-2-O-1 127 3 229 6 128 5 14	C-7-H-17			111.5	- 	C-15-0-14-C-5-C-4			3(3)	181 3
3 150 4 160,5 155.9	C-7-H-18			-	111 3	H-6-(-2-C-1-0-5	180.21	C1	180 9	C1
3 1131 1205 1134 1210	5.77.0	1583	150.4	160.5	155.9	H-7-(3-C-2-0-1	250 3	62.2	250.7	67.4
101 44 113 5 102 0 113 3 11-0-O-8-C+2-C+2 139 7 51 4 151,0 114 8 114 8 114 8 114 8 115,0 120 1 0.11-C+4-C+3-C+2 102 2 296 0 08 5 112,0 120 1 123 1 123 2 123 2 131 1 58 3 112 5 113 4 109 4 14-15-C+4-C+3 131 1 58 3 112 5 114 6 - 114 6 - 114 6 - 114 6 114 6 - 114 6 - 114 6 1	O-1-C-2-C-3	113.1	120.5	113.4	121.0	0-8-(-3-0-1-0-1	127 3	9 622	128.5	305 8
H-10+C+4-C+3-C+2 102 2 296 9 98 S 112.9 120 1 0 \cdot 112.0 \cdot 120 1 0 \cdot 112.0 \cdot 120 1 0 \cdot 112.0 \cdot 112.0 \cdot 120 1 0 \cdot 27 2 66 0 27 2 60 6 111 4 109 4 H-13-C+3-C+4-3 131 1 58 3 112 S H-14-C+5-C+4-3 256 6 236 0 62 1 H-16-C+15-0 \cdot 14-C+5 25 6 236 0 62 1 H-16-C+15-0 \cdot 14-C+5 25 6 236 0 209 7 H-18-C+15-0 \cdot 14-C-5 180.9 180.9	(-5-(-3-(-4	TH 101	113 5	102.0	1133	11-9-()-8-(3-(2	139.7	115	151.0	217
112.9 120.1 O-11-C-4-C-3-C-2 220.3 \$6.0 217.2 123.1 128.2 H-12-O-11-C-4-C-3 65.0 27.2 60.6 H114 1094 H-13-C-5-C-4-C-3 131.1 \$8.3 112.5 H-14-C-5-C-4-C-3 256.6 236.0 H-16-C-15-O-14-C-5 236.0 H-16-C-15-O-14-C-5 236.0 H-17-C-15-O-14-C-5 236.0	5-7-0-7-0-7-0	× <u>+</u>		×:		日中により	102.2	206.0	v. 20	296.1
123 128 2 H-12-O-11-C-4-C-3 65 0 27 2 60 6 111 4 109 4 H-13-C-5-C-4-C-3 131 58 3 112 5 H-14-C-5-C-4-C-3 256 6 236 0 125 6 1416-C-15-O-14-C-5 256 6 236 0 1416-C-15-O-14-C-5 256 6 236 0 1416-C-15-O-14-C-5 256 6 236 0 251 256 6 236 0 251 256 6 236 0 251 256 6 236 0 251 256 6 236 0 251 256 6 236 0 251 256 6 236 0 251 256 6 236 0 251 256 6 236 0 251 256 6 236 0 251 256 6 236 0 251 256 6 236 0 2	()-14-C-5-C-4			112.9	120 1	0-11-C-4-C-3-C-2	220 3	96 (1	217.2	36.0
H	C-15-0-14-(C-5			123.1	12x 2	H-12-O-11-C-4-C-3	0 59	272	9119	35.9
256 6 236 0 62 1 25 299 7 25 180.9	57++C3		7		100	H-13-C-5-C-4 C-3	131	583	1125	0 99
-5 62 1 -5 199 7 -5 180.0						H-14-C-5-C-4-C-3	256.6	336 ()		
55 (80.9						H-16-C-15-()-14-(-5			1 29	30 30 30
0.081						H-17-4-15-0-14-C5			2.667	298.7
						H-18-C-15-O-14-C-5			180.0	1797

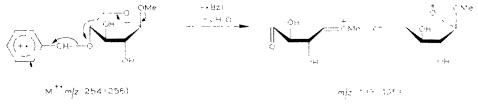
Scheme 2

 $\Delta H_{\rm f} = 281 \text{ kcal mol}^{-1}$

TABLE IV DISTRIBUTION OF NET CHARGES IN $(10^3~e)$ on the atoms of cyclic and acyclic isomers of ions $[C_4H_7O_3]^+$ and $[C_3H_9O_4]^+$ as calculated by the mndo method

 $\Delta H_{\uparrow} = 167 \text{ kcal mol}^{-1}$

Atom	$[C_4H_7O_3]^+$		$[C_5H_9O_4]^+$	
	Cyclic	Acyclic	Cyclic	Acyclic
O-1	-86.9	-197.8	-138.3	-215.1
C-2	377.3	225.7	399.1	228.0
C-3	56.6	80.8	53.9	54.4
C-4	80.4	50.2	96.4	138.3
C-5	74.3	515.5	246.6	383.9
O-14			-338.1	-131.9
C-15			202.0	183.7
H-6	187.2	71 8	180 8	67.1
H-7	84.6	43.4	84.7	35.1
O-8	-283.5	-348.8	-290.5	-345.9
H-9	242.0	248.6	240.8	237.8
H-10	114.0	127.4	103 5	92.1
H-11	-258.4	-290.2	-260.4	-283.4
H-12	204 1	238.3	216.2	230.8
H-13	113.8	128.4	110.5	118.9
H-16			21.5	57.6
H-17			15 0	92.0
H-18			57.0	56.5
H-14	94.5	110.7	÷ · · · ·	20.2


Scheme 3

 $[C_5H_8O_3]^+$ at m/z 116 (117) are formed from $[M-CH_2O]^+(B_1)$ ions (a peak for the latter is absent from the spectrum) by the elimination of benzyl alcohol, and are further cleaved by loss of formaldehyde to give the ions having m/z 86 (87) and ele-

Scheme 4

mental composition $C_4H_6O_2$ (Scheme 4). In contrast to the mass spectra of compounds 1, 3, and 4, the spectrum of 2 reveals two ions, A_1 at m/z 223 and $[M-MeOH]^+$ at m/z 222, having approximately the same intensities. With the α anomer (3), the elimination of methanol is far more pronounced. Differences in relative proportions were also observed with other ions. Comparison of the intensities of ions at m/z 114 and 116 showed that, in the β anomer, the processes of subsequent elimination of MeOH and BzIOH, or BzIOH and MeOH, were favored over processes leading to ions at m/z 116 (a peak at m/z 114 is the most abundant). In contrast, in the α anomer, the process depicted in Scheme 4 (m/z 116 is the base peak) is favored. Differences in the spectra are caused by the different steric arrangement of the methoxyl group and thus in the ability to eliminate MeOH. The intensity ratios of the ions at m/z 114 and 116 remained almost the same, for both anomers, independent of the applied ionization energy and the construction of the instrument (Table V).

As expected, the ions of series F at m/z 163 ($C_{10}H_{11}O_2$) are the most intense in the mass spectrum of the 4-benzyl ether 4. Ions $[C_5H_9O_4]^+$ at m/z 133 (135)

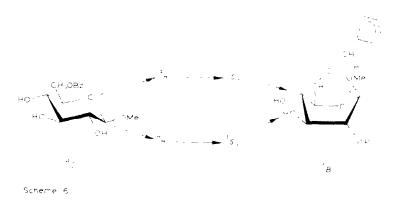
Scheme 5

(Scheme 5), analogous to the ions at m/z 103 in the fragmentation of the 2-O-Bzl derivative, are formed by a mechanism similar to that for 1 (Scheme 1).

As in the preceding case, the MNDO calculations for tentative structures of the $[C_5H_9O_4]^+$ ions revealed the cyclic structure to be the more stable (Scheme 2, Tables III and IV). The presence of a methoxyl group enhances the possibility of charge delocalization in both structure, and simultaneously decreases the energy difference to 11.4 kcal.mol⁻¹

TABLE V ratio of peak intensities m/z 114/116 in the spectra of anomeric methyl 3-O-benzyl-d-xylopyranosides

Compound no	m/z 114/116		
		' '	Varian MAT-111 (70 eV)
2	4 00	4.15	3.60
3	0.48	0.44	0 50


The strong differences in abundances of characteristic ions at m/z 114 and 103 (Table II) enable a simple and unambiguous localization of the benzyl group in methyl O-benzylpentopyranosides (Table VI).

Methyl O-benzylhexopyranosides (5–8). — The increased number of hydroxyl groups in the molecules 5–8 leads to mass spectra that are more complex (Table VII). The ion types characteristic of methyl O-benzylpentopyranosides (1–4) have their analogs in methyl O-benzylhexopyranosides. The mass spectra (Table V) show molecular ions at m/z 284 (287). The formation of isomeric ions of the series F (m/z 163, 87, 73) and H (m/z 150, 74, 60) prevails in this instance. Noteworthy is the elimination of methanol from the molecular ion of the 6-O-benzyl derivative; it proceeds very readily and the ions at m/z 252 (255) form the base peak of the spectrum. Experiments on O-deuterium labeling revealed that a proton of the methylene group takes part in the elimination of methanol from the molecular ion. Methyl 6-O-benzylglucopyranoside adopts mainly the ${}^4C_1(D)$ conformation at room temperature, but on heating in the mass spectrometer, ready changes of conformation take place, through 4H_3 , 1S_3 or 4H_5 , 1S_5 to ${}^{1.4}B$ (ref. 8) (Scheme 6). Dreiding models show that, in the ${}^{1.4}B$ conformation a proton of the methylene

TABLE VI ${\it CRITERIA FOR BENZYL\hbox{-}GROUP ASSIGNMENT IN METHYL O-BENZYL PENTOPYRANOSIDLS. }$

m/z	Symbol	$^{\circ}_{\circ}\Sigma_{45} \times 100$		
		2-O-B2l	3-O-Bzl	4-O-Bzl
114		4	xxx	
103	ОН	XX		

[&]quot;Peak intensities (Table VI, VIII, and X): \cdot , 0.5%; \cdot \cdot , 0.5–1%, \cdot \cdot , 1–5%; x, 5–10%, xx, 10–20%, and xxx, 20%.

group approaches the β -glycosidic methoxyl group close enough to permit its transfer to oxygen. From the mass spectra given in Table VII, we have selected those ions whose presence and abundances indicate the position of benzyl groups in the molecule (Table VIII).

Methyl O-benzyl-6-deoxyhexopyranosides (9–11). — The 12-eV mass spectra are given in Table IX. All compounds showed molecular ions at m z 268. In comparison with methyl O-benzylpentopyranosides, ions of the H type (m z 150) are more abundant. Ions at m z 117 (119) are formed with compound 9 as for the ions at m z 103 (105) from compound 1 (Scheme 1), but their relative proportion is lower. Subsequent eliminations of MeOH and BzIOH from molecular ions of the 3-O-benzyl derivative 10 proceed with equal ease as with compounds 2 and 3. The result of this process is a concentration of the ions at m z 128 (128), which constitute the base peak of the spectrum. The occurrence of ions having m z 148 (148) in the spectrum of the 4-OBzl derivative 11 (K series) is surprisingly high in comparison with corresponding pentopyranosides (4, m z 134) and hexopyranosides (7, m z 164). From the mass spectra given in Table IX, characteristic ions have been selected that permit unambiguous determination of the position of the benzyl group in these compounds from the relative proportion of the ions at m z 148 and 128 and from the ratio of the ions at m z 148 and 128 and from the ratio of the ions at m z 148 (Table X)

EXPERIMENTAL.

Materials. — Compound 1–11 were prepared according to published procedures^{1,2,9–13}. The anomeric configurations of the samples were verified by ¹³C-n.m.r. spectroscopy. The ¹³C-n.m.r. spectrum of methyl 6-O-benzyl-glucopyranoside (8) confirmed the formation of a 1:1 anomeric mixture ¹³C-N.m.r. spectra were recorded in CDCl₃ with a Jeol FX-60 FT n.m.r. instrument; Me₄Si was the internal standard.

Mass spectra. — Mass spectra (70 and 12 eV) were recorded with a JMS-D 100 (Jeol) mass spectrometer operating with an emission current of 300 μ A. The temperature at the site of sample evaporation of the direct-inlet system was 150–

m/z	$\%\Sigma_{45}$	× 100			m/z	$c_{\phi}^{\star}\Sigma_{45}$	\times 100		
	5	6	7	8		5	6	7	8
248	48	94	250	153	122	27			
253	13				121	360	337	139	49
252		37	134	1431	120	24	327		52
235	27	11	13		118	22	5.27	100	41
234	61	25	16	32	117	99	84	134	64
223	12	20	10		116	34	179	105	219
221	30	11	14		115	342	116	105	76
217	30	11	9	8	112	342	110	129	70
216		116	7	7	111		116	129	
209		110		8					
209	37			0	110	40	158	120	210
	37			17	105	48	179	139	248
205				17	104	78	4.0		86
204				11	103	48	168	72	73
203	51	105	27	13	100	68	406	673	51
198		13			99	20	263		51
193	30	22	55	96	98	34	232		35
191		39		27	97	342	179	250	48
188	49			13	87	132	295	720	1373
181				37	86	22	833		54
180			81	54	85	68	147	110	87
179	25		240	262	84				24
176	20	158		17	83				17
175	37	327		28	82		189	384	138
74				20	81			115	24
173				37	79				20
166			48		75		200	327	116
164	377		134	29	74	144	390	711	357
163	3378	274	644	189	73	960	844	841	555
162		94		438	72			134	
161	126			56	71	192	205	125	430
60	30			30	70	24	2000	77	38
59	50			14	69	85	221	183	67
151	75	232		80	68	0.5		77	17
150	806	274	192	54	61	186	242	370	87
149	000	158	172	160	60	58	4-Tau	250	540
148		1.50	187	59	59	.70		250	13
	51								
147	54	16.1	115	35	58 57	157	350	120	35
146	164	464	235	68	57	157	258	139	189
145	147	137	173	89	45	46	168	471	62
144	200	379		16					
143	89		<i>-</i> .	13					
135	30		56	34					
134	34		50	94					
133	411	121	173	467					
132	46			61					
131				262					
129	30		91	32					
128	116	147	129	29					
127			38						
123				43					

TABI F VIII	
CRITERIA FOR BENZYL GROUP ASSIGNMENT IN M	FTHYE (O-BENZYCHENOPYRANOSIDES

m/z	 Symbol		- ()()	-	
		2-O- <i>Bzl</i>	3-O- <i>B</i> zl	4-()-Bzl	6-O-Bzl
252 150	[M - McOH]' [BzIOCH=CHOBzI]' H	0			**
ห7	HOCH - CH-CH = OMe F			•	**
86	[м влон ; СН-О]	_	`	o	

180°, depending on the volatility of the samples, that of the ionizing chamber being 200°. The 70-eV spectra of compounds 2 and 3 were also recorded with a Varian MAT 111 instrument. The conditions of measurement were identical with those for the first instrument. Mass spectra in Tables II, VII, and IX do not include ions having m/z 91 and 65 in the summation. The relative intensities of ions having m/z 91 were ~1000° ϵ , as compared with the base peaks given in the Tables. Measurement of metastable transitions was made with a metastable-ion detector MS-MT-01. Flemental compositions of selected ions were estimated at 10,000 resolution by using a JMS-D 100 instrument. O-Deuterations were performed by dissolution of the samples in CH₃OD + D₂O (10:1) and subsequent evaporation in the mass spectrometer. The degrees of deuteration achieved were ~80° ϵ . The m/z values in parentheses in the text and schemes refer to the spectra of O-deuterated compounds.

Both the structures and stabilities of $[C_4H_7O_3]^+$ and $[C_5H_0O_4]^-$ ions were calculated by using a semiempirical MNDO⁷ quantum-chemical method. In the calculation, all bond lengths, bond angles, and dihedral angles were optimized

m ₁ z	Symbol	$^{\prime} \epsilon \Sigma_{48} \times 100$		
		2-O-B2l	3-O- <i>Bz1</i>	4 ()-Bz!
148	[BAOCH=CHCH3] .			**
128 150:148	[M = MeOH - BzlOH]* H/K	5	XX 115	0 -

TABLE IX ${\tt MASS\,SPECTRA\,(12\,eV)\,OF\,METHYL\,\textit{O}-BENZYL-6-DEOXYHFXOPYRANOSIDES}$

m/z	$\%\Sigma_{45}$ ×	100		m/z	$\%\Sigma_{45}$:	$\%\Sigma_{45} \times 100$			
	9	10	11		9	10	11		
268	71	45	340	115	154	29			
237	26	42	71	113		32			
236	20	49	126	112	52	24			
223		9		105	447	28	98		
218		18		103	33		46		
206	270		18	101		109	30		
200		17		100	262	545	34		
196		20		99	239	57	52		
195		9		88		514			
193	41	28	58	87	687	381	1206		
192		28	• •	86		116			
191		18		85	38	62			
190		31		84	67	140	170		
181		J.	40	83	44	202	40		
180	15		.0	82	• •	59			
178	23			79	30	21			
177	23	17	55	77	27	~ .			
176	23	28	33	75	118	46	371		
175	25	28		74	272	233	896		
164	169	20	120	73	725	506	695		
163	571	233	402	72	12.	62	075		
162	371	20	402	71	335	140	340		
161	31	140	37	70	333	140	540		
	31	49	31	70 69	20	24			
160 151		685		68	17	14	77		
	1420	1153	695	61	247	37	151		
150	1420								
149 148	66	14 10	176	60 59	138 139	18 32	188 64		
	262		1020	58	208	171	04		
147	20	12				54	340		
146	123 29	20 42		57	478	73	340		
145			122	56	102	26	162		
144	55 10	42	123	45	193	20	463		
143	19	26							
136	277	26	100						
135	277	132	108						
134	38	109	105						
133	332	101	340						
132	49	62	24						
131	32	40	34						
130	40	264	43						
129	32	1300	34						
128	20	1309	101						
121	416	451	191						
120		21	83						
119	115		340						
118		37							
117	339		136						
116		857							

ACKNOWLEDGMENTS

The authors thank Dr. P. Kováč for his gift of methyl monobenzyl pento- and some hexo-pyranosides and Mr. Ulický from the Computing Laboratory of the Slovak Planning Commission, Bratislava for technical assistance (computer)

REFERENCES

- 1 P. KOVAC, Collect Czech Chem Commun, 44 (1979) 928-932
- 2 P. KOVAC AND J. ALFOLDI. Chem. Zvesti, 32 (1978) 519-523.
- 3 K HEYNS, K"R. SPERLING AND H. F. GRUTZMACHER, Carbohydr Res., 9 (1969) 79-97
- 4 V KOVACIKANDP KOVAC, Chem Zvesti, 27 (1973) 662-667
- 5 V. KOVACIK AND P. KOVAC, Carbohydr. Rev., 24 (1972) 23-28.
- 6 N. K. KOCHETKOV AND O. S. CHIZHOV, Adv. Carbohydr. Chem., 21 (1966) 39-93
- 7 M J S. DEWAR AND W THIEL, J Am Chem Soc., 99 (1977) 4907-4917
- 8 J. F. STODDART, Stereochemistry of Carbohydrates, Wiley-Interscience, New York, 1971, 47–122
- 9 P KOVAČAND J ALLOLDI, Chem Zvesti, 33 (1979) 785-791
- 10 J. M. KUNSH RAND I. DYONG, Justus Liebigs Ann. Chem., (1975) 2179-2189.
- 11 P. KOVACSANDŽ. LONGAUFROVA, Carbohydr. Res., 25 (1972) 253-258.
- 12 B. NORRMAN, Acta Chem., Scand. 22 (1968) 1623-1627
- 13 R. TOMAN, J. ROSIK AND M. ZIKMUND. Carbohydr. Res., 103 (1982) 165-169.